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ABSTRACT
Multimodal learning analytics (MMLA) research for building collab-
oration quality estimation models has shown significant progress.
However, the generalizability of such models is seldom addressed.
In this paper, we address this gap by systematically evaluating
the across-context generalizability of collaboration quality mod-
els developed using a typical MMLA pipeline. This paper further
presents a methodology to explore modelling pipelines with differ-
ent configurations to improve the generalizability of the model. We
collected 11 multimodal datasets (audio and log data) from face-to-
face collaborative learning activities in six different classrooms with
five different subject teachers. Our results showed that the models
developed using the often-employed MMLA pipeline degraded in
terms of Kappa from Fair (.20 < Kappa < .40) to Poor (Kappa < .20)
when evaluated across contexts. This degradation in performance
was significantly ameliorated with pipelines that emerged as high-
performing from our exploration of 32 pipelines. Furthermore, our
exploration of pipelines provided statistical evidence that often-
overlooked contextual data features improve the generalizability
of a collaboration quality model. With these findings, we make
recommendations for the modelling pipeline which can potentially
help other researchers in achieving better generalizability in their
collaboration quality estimation models.
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1 INTRODUCTION
Multimodal learning analytics (MMLA) allows researchers to cap-
ture activity traces from the physical space of collaborative learning,
unlike traditional log-based learning analytics [2]. By capturing
activity traces from both physical and digital spaces, MMLA enables
a more holistic understanding of collaboration. In this direction,
researchers have explored the use of different data sources (e.g.,
audio and video) [26] and identified several indicators of collabora-
tion behavior [20]. For example, speaking time has been found to
be an indicator of equality of participation [20] which was found
as an indicator of the quality of collaboration [3, 15]. Furthermore,
MMLA research has also been extended to automatically detect
collaboration in the context of collaborative learning. For example,
researchers have also built models that can automatically estimate
collaboration behavior [3, 22, 30].

Estimation models for collaboration have the potential for build-
ing automated tools (e.g., [14]) that can support teachers monitor
student activity during collaborative learning. In fact, such tools
were also found to be effective in improving teachers’ awareness
of collaborative activity as illustrated by [9]. These advances may
contribute toward propelling MMLA research on automating col-
laboration estimation [5]. Consequently, there has been a growing
interest in building models that can automate the collaboration
estimation in MMLA [3, 8, 11, 15, 22, 30].

The collaboration estimation models developed in MMLA have
performedwell compared to baseline performances (e.g., chance per-
formance [8] or majority performance [12]). In some cases, studies
have reported achieving accuracy above 90% for their classification
models of collaboration [33]. The majority of research, however,
has only used data from a single learning context1 for collaboration
estimation model development and evaluation [11, 12, 33]. This

1Here, we consider a learning context composed of multiple aspects, e.g., students,
learning activity, teacher, and learning environment. For example, if two learning
contexts involve the same students, teacher, and learning environment, but different
learning activities, then these two will be perceived as different in terms of an activity
task.
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means that using data from a single context confines the applicabil-
ity of developed models to a particular context, thus, limiting the
knowledge on the generalizability of developed models [16].

The generalizability of collaboration estimation models to other
learning contexts -which the models have never seen- is still in
question [31, 33]. A systematic evaluation of the model’s general-
izability at different levels (how the model performs within and
across contexts) is currently absent. Moreover, it is critical for the
implementation in authentic contexts because any MMLA system
once put into practice will see a new context (by our criteria of
contextual differences) every time it is used for estimation [5]. Con-
sequently, there is a lack of knowledge on how to build generalizable
estimation models for collaboration.

The evaluation of generalizability demands the collection of ad-
ditional MMLA datasets [16], preferably from a different learning
context to assess the generalizability of the model across contexts.
With this demand of collecting multiple MMLA datasets, an ad-
ditional question arises: would contextual features which contain
crucial information about the learning context contribute to the
generalizability of the model? Furthermore, an appropriate selec-
tion of modelling steps (e.g., outlier handling or data scaling) is
crucial to improve the generalizability of the models [28]. However,
there is a lack of research on how different modelling steps impact
the generalizability of the collaboration estimation model.

These aforementioned gaps in MMLA research led us to pose
three research questions: RQ1- How do collaboration estimation
models which are developed using a standard MMLA pipeline per-
form across different contexts?;RQ2 - WhichMMLA pipeline offers
further improvement in the model’s performance across contexts,
in other words, its generalizability?; RQ3 - What is the impact of
adding/removing a modelling step and contextual features on the
model’s performance across contexts?

To answer the aforementioned research questions, we collected
11multimodal datasets (audio and log) from six Estonian classrooms
with five subject teachers during face-to-face collaborative learning
activities. We used these datasets to develop collaboration estima-
tion models using a standard MMLA pipeline (e.g., the one used
in [15]) and performed a systematic generalizability evaluation,
addressing RQ1. To tackle RQ2, we explored multiple pipelines (32
in total) to develop collaboration estimation models and identified
high-performing model pipelines in terms of across-context gener-
alizability. We then examined the performance of these pipelines to
study the impact of different modelling steps and the use of contex-
tual features on the generalizability of the model using a statistical
method, thus addressing RQ3.

2 RELATEDWORK
MMLA research has grown on estimating collaboration (or its as-
pects) using a variety of data sources, ranging from logs, audio, and
video to eye-gaze trackers [26]. The automation of collaboration
estimation can potentially help to develop monitoring tools that
can support teachers during a collaborative learning activity [9].
However, given the multidimensional nature of collaboration [25],
this estimation would limit the actionability aspect, i.e., the teacher
would be clueless about how the current situation of low collabora-
tion quality can be improved. Therefore, some MMLA researchers

developed models for underlying dimensions of collaboration qual-
ity such as argumentation or knowledge exchange [5, 22]. Through
these studies, the collaboration quality construct is examined in
greater depth, which further opens the possibility of automated
guiding tools to support teachers’ interventions. For example, the
availability of intervention strategies for collaboration quality di-
mensions from computer-supported collaborative learning (CSCL)
literature togetherwith the automatedmodels could help in develop-
ing guiding tools to assist teachers with intervention strategies [9].

MMLA research on automating the estimation of collaboration
quality and its dimensions has reported achieving accuracy from
moderate (70% accuracy [19]) to high (90% accuracy [33]). The
majority of these studies have used accuracy as a performance
metric for their models, it is problematic for cases with a class im-
balance problem (e.g., binary labels with 80%/20% ratio). Therefore,
researchers have also used other performance metrics for report-
ing their results, e.g., f1-score [15], Kappa [33], Area under the
curve [11], etc. These performance metrics are often reported with-
out any reference point, hindering the assessment of solutions for
automatic collaboration detection at community level in MMLA.
This need for a reference point has also been argued in a frame-
work [5] proposed as a model evaluation framework for MMLA.

In order to develop their models, researchers have often followed
a standard machine learning process, mainly including data collec-
tion, feature extraction, model development and evaluation [1, 3, 8,
11, 15, 17, 19, 30, 33]. In this process, the data flow through multiple
steps (e.g., scaling and outlier handling) which are altogether called
the modeling pipeline. Each of the modeling steps usually has more
than one choice to select from. For example, there are multiple
techniques to perform data scaling such as Standard or MinMax
scaling. Since the selection of a particular choice can impact the
performance of the developed model [29] it is essential to under-
stand the impact of the different choices on the generalizability of
the model.

With the availability of diverse choices for each of the modelling
steps in the pipeline, the total number of alternatives becomes very
large. For example, the researcher may wonder which data scaling
and which strategy to use for handling class imbalance. This makes
the exploration of all the choices for each modelling step a time-
exhausting task. Therefore, to expedite the model development
process, MMLA researchers have often used a similar pipeline to
develop collaboration estimationmodels [1, 3, 11, 31]. This approach
saves time but deprives models from achieving high performance
with an adequate selection of choices.

For model evaluation, K-fold cross-validation (CV) with varying
values of K has been used (e.g., 10 [12, 15], 5 [23], or 4 [31]). In
educational terms, this evaluation assesses the model using data
instances never seen by the model in training but taken from the
same kind of context (i.e., contexts with the same teacher, learning
activity, students, and learning environment). As a consequence,
the K-fold CV results approximate the performance of the model
in a similar situation that is not realistic in authentic practice (e.g.,
every new class would have a new activity or different teacher or
students).

The majority of MMLA research has developed estimation mod-
els with data from a single context [1, 15, 17, 19, 33]. Consequently,
their results from model evaluation only indicate how well the
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Figure 1: (a) Students working on the collaborative activity in the classroom (b) Collaborative activity space in CoTrack (c) A
real-time multimodal dashboard for teachers to track monitoring students, component-1 showing activity details, component-2
showing speaking dynamics, component-3 showing controls to join group activities and component-4 showing writing activity

model performs within the same context. To gain an understand-
ing of models’ across-context generalizability, there is a need for
additional datasets from different contexts. In this direction, the
information about differences among contexts (from which data is
collected) is highly relevant from educational points of view [13].
The importance of this contextual information, however, is yet
to be explored for the development of collaboration estimation
models. This, therefore, raises the question of whether contextual
information in addition to multimodal data features impacts the
generalizability of the collaboration quality model.

A few research works assessed the generalizability of their mod-
els on datasets from different learning contexts [5, 22]. For example,
recent work from Pugh et al. [22] assessed the generalizability of
their language-based models in the task of classifying collaborative
problem-solving facets (e.g., constructing shared knowledge). Their
model achieved a transfer ratio of 93% on performing in a context
with a different learning activity. Similarly, Chejara et al. [5] re-
ported their linguistic feature-based models filling 40-60% between
chance and human performance at the task of rating collaboration
quality dimensions. These studies provide preliminary evidence of
the feasibility of building generalizable models. On the other hand,
the aforementioned research was limited in terms of the number
of evaluated contexts (e.g., datasets from two contexts different
only in terms of activity). Therefore, further research is needed to
evaluate generalizability in a wider variety of contexts.

3 MATERIALS AND METHODS
This section presents details of the study context, data collection
setup, and research methods.

3.1 Context and data collection
The datasets used in this paper were collected as part of a previous
study focusing on investigating teachers’ perspectives on usingmul-
timodal analytics for monitoring and guiding collaborative learning
activities [9].

3.1.1 Study context. The study was conducted in an Estonian vo-
cational school during fourteen sessions of collaborative learning
activities in the autumn semester of 2021. Out of fourteen, there

were three sessions with missing data for all the groups. As a result,
we only considered eleven sessions from our study. These eleven
sessions were conducted in six different classrooms by five different
teachers. The subjects were English language, Mathematics, Chem-
istry Integrated with Woodwork, Communication, and Estonian
language with a total of 105 students. The language of instruction
in all sessions was Estonian except for English language as a for-
eign language (English language). The majority of students in the
study were Estonian. Table 1 presents the details of the contexts and
learning activities. In all cases, the collaborative activity entailed
the use of a collaborative text editor where students were asked to
write the responses of their group.

3.1.2 Data collection tool. The study was conducted with the use
of a tool: CoTrack [4]. This web-based application allows teachers
to create collaborative learning activities with monitoring function-
alities. It offers a collaborative writing space for groups, with the
use of Etherpad3, to draft the solution to a given problem together.
CoTrack also records every writing activity and student’s audio.
The audio data is processed by CoTrack allowing extraction of data
features in real-time (e.g., speaking time, turn-taking, and speech-
to-text). These features are used by CoTrack to generate a real-time
dashboard. Figure 1 shows the collaborative learning context, the
student learning environment in CoTrack, and the dashboard.

3.1.3 Procedure. All collaborative learning activities were planned
prior to the enactment of the study. The subject teacher together
with a researcher (also co-author of this paper) from educational
sciences created the learning design. As the activity involved the
use of a particular web application (CoTrack), the help materials on
how to use it were shared with the participating students in advance.
Consent was asked from adult students and additionally, consent
was also taken from the parents of students who were younger
than 18 years old. On the day of the activity, the aforementioned
researcher was present in the classroom and briefly explained the
purpose of the study to the students before the activity.

The researcher also provided information on what data would be
recorded during the activity. The data recording part was optional

3https://etherpad.org/
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Table 1: Characteristics of learning activities

id Learning activity task Students Groups Subject

1 The task was to complete the given sentences on past and present tenses. The activity also asked
the groups to discuss and write collaboratively a paragraph on what they will do if they were
given a particular sum of money (10,000 euros).

6 2 English
Language

2 The activity involved reading a magazine’s article containing multiple paragraphs explaining
the journey of a girl who became a press reporter from a librarian in a month. The students
were asked to first assign headings to each paragraph and then to discuss their opinion on the
possibility of learning a completely new job in a month.

8 3 English
Language

3 The task was to write an essay collaboratively on given topics (e.g., The generation today is less
healthy than our parents’.). The groups were also asked to assess their essay against a set of
checklists focusing on content, communication, organisation and language use.

4 2 English lan-
guage

4 The task involved preparing a presentation in the group on one of the epics2 topics (e.g., Gilgamesh,
Song of my Cid). The groups were given instructions on the content to put in the presentation,
e.g., describe the main characters, and summarise the central story of the epic. At the end of the
session, the groups were asked to present in front of the class.

7 3 Estonian
language

5 The groups were given a speech conversation transcript involving people asking questions about
their habits. Groups were first asked to gather the same information from their peers and write
the complete sentences including the name of their peer.

9 3 English lan-
guage

6 The task involved a hypothetical situation of a person, Steve, who needed to renovate a particular
portion of his house (exterior facade, bathroom, and living room). The groups were given a map
of the house with measurements of each wall as well as the floor. The groups were asked to first
prepare a list of tools and materials needed to complete the renovation. The groups were also
asked to discuss the estimated cost of labour and materials, and prepare the final document with
all details for Steve.

15 5 Wood work
and Chem-
istry

7 The collaborative activity involved solving a set of geometric problems. Each group was given a
similar set of problems with different measurements. For example, one problem for group 3 was
to calculate the perimeter and area of a rectangle with a diagonal of 8.5 dm forming an angle of
25 degrees with the longer side.

13 4 Mathematics

8 The groups were given topics to choose from and then write a for-and-against essay. Firstly, they
put down ideas supporting the topic, and secondly, they write arguments opposing it. The groups
were given a structure to follow for the essay.

9 3 English
Language

9 The activity involved dividing student groups in two categories: Employee and Employer. For
each category, students were given a set of questions/tasks to discuss and write down in the
text-editor. For example: one of the tasks for the Employer group was “You are the owners of a
construction company, please think about which personal traits are important for a construction
worker. Put down the traits below and also the reason why they are important. “

13 4 English
Language

10 Same as #9. 8 3 English
Language

11 The task was to write a discursive essay on the topic "The Growth of Online Shopping Has
Greatly Improved Life for the Consumer" after brainstorming the arguments for and against the
topic’s idea. The groups were given a similar checklist as #3 for evaluating their essay.

11 3 English
Language

and students were free to opt out of being recorded. In the case of
opting out from recording, students were simply instructed not to
allow camera and microphone access to the application, but could
still be involved in the activity. The students were given instructions
on how to access the collaborative learning environment and then
asked to work on the given activity in the groups formed by the
teacher. Each student had a laptop and a microphone for the activity
(see the student distribution in Figure 1a). During the activity, the
teacher had access to a dashboard provided by the web application
(see Figure 1c).

3.2 Dataset processing
We obtained pre-processed data from CoTrack. CoTrack has inte-
grated features for tracking Voice Activity Detection (VAD) and
converting audio data to speech data using the Google Speech-to-
Text API. This data was provided by CoTrack in the form of a CSV
(Comma Separated Values) file. The VAD data included a timestamp,
the speaking duration, a group-id, and user-id. The speech-to-text
data included a timestamp, a group-id, a user-id, and a speech tran-
script. We also downloaded writing logs from CoTrack containing
a timestamp, a user-id, a group-id, characters written/deleted, the
length of text before the operation (e.g., write, delete), the type



How to Build More Generalizable Models for CollaborationQuality? LAK 2023, March 13–17, 2023, Arlington, TX, USA

Table 2: Extracted Features

Data source Feature Description

Audio

speaking_time Speaking time in seconds
turn_taking Number of turns taken by

student in every 30 seconds
freq_I Frequency of word ‘I’
freq_WE Frequency of word ‘WE’
freq_WH Frequency of WH-words

(e.g., why, what)

Logs char_add Number of characters writ-
ten

char_del Number of characters
deleted

of operation, the difference in terms of text length after the oper-
ation, and the final text on Etherpad. The identifiers used in the
downloaded CSV files (e.g., user-id) were already anonymized by
CoTrack.

3.2.1 Data exclusion. We had to discard data from some groups
because of missing video data from one or more of the participants
in those groups. The video data was used for annotation purposes
and having missed the data of even one participant restricted the
annotation for the entire group. Thus, we decided to discard the
data of the groups where video recordings for all participants were
not available. In total, ten groups were excluded.

3.2.2 Feature extraction. We used the CSV files obtained from Co-
Track for feature extraction (see Table 2 for extracted features). We
extracted speaking time and turn-taking from VAD data. These fea-
tures are found to be predictors of collaboration quality in MMLA
[12, 19, 20]. From speech data, we extracted the frequency of “I” and
“We”. Our decision for selecting these features was based on past
research which found differences in high and low collaborating
groups in terms of their usage of the words “I” and “We” [32]. Addi-
tionally, we also extracted the frequency of wh-words from speech
data. As there were three sessions where Estonian language was
used for communication, for those sessions we extracted the fre-
quency of Estonian translations of "I", "We" and wh-words ("I":"Ma",
"We":"Me", kes":"who", "kus":"where", "mis":"what", "miks":"why",
"kuidas":"how", "milline":"which", "millal":"when"). From the writ-
ing logs, we extracted the number of characters written or deleted
by the participants of the groups. As these features were collected
on an individual level, we further took the average and the stan-
dard deviation to compute group-level features for each extracted
feature.

3.2.3 Annotation. To obtain the ground truth of collaboration qual-
ity and its underlying dimensions, we used a rating scheme from
Rummel et al. [25]. This rating scheme assigns scores for seven
dimensions of collaboration quality, namely: argumentation, sus-
taining mutual understanding, cooperative orientation, structuring
problem solving and time management, individual task orientation,
knowledge exchange, and collaboration flow. Four MA graduate

students from the School of Digital Technologies were trained us-
ing the adapted rating scheme as suggested by the author [25]. We
assigned a score to each of the seven dimensions of collaboration
quality every 30 seconds. The scores were on a 5-point scale (i.e.,
-2,-1,0,1,2). Cohen’s Kappa was above .60 for all seven dimensions of
collaboration quality, indicating substantial (as per [10] guidelines)
inter-rater agreement. We added all the scores of the seven dimen-
sions and took their average to compute a measure of collaboration
quality. We further mapped4 the scores for each dimension and the
collaboration quality into binary labels (High, Low) for developing
classification models. .

3.3 Methods
This section presents the methods employed to address the research
questions set in the study.

3.3.1 Model development with a typical MMLA pipeline and gener-
alizability evaluation (RQ1). We employed the widely used MMLA
pipeline (multimodal data collection→ feature extraction→model
development→ model evaluation) for building classification mod-
els for collaboration quality and its underlying dimensions. We used
the random forest algorithm to build the models for two reasons:
firstly, this algorithm has been found to achieve high performance
in the field of MMLA [1, 21, 33]; secondly, we also achieved similar
results in our previous study exploring machine learning models
for estimating collaboration quality and its dimension [5].

The developedmodels were assessed using 10-fold cross-validation
(CV) and a leave-one-context-out evaluation schemes, both of a
nested nature (two levels of cross-validation, one for hyperparame-
ter tuning and another for evaluation purposes). The 10-fold CVwas
performed separately on the dataset from each context to obtain a
measure of generalizability within the context (or generalizability to
the same context in terms of activity, teacher, students, etc.). In this
evaluation, the dataset was divided into ten approximately equal
portions, using nine portions for training and one for testing. This
process is iterated ten times with the selection of a different portion
for testing. The second evaluation scheme (leave-one-context-out)
divided the datasets based on learning contexts. For example, our
datasets were collected from eleven different learning contexts5.
Thus, the datasets were split into eleven portions. Similarly, ten
portions were used for training and one for testing. This was iter-
ated eleven times. This evaluation allowed us to approximate how
well the developed models perform in a learning context that could
be different from the ones used for model development. Thus, it
enabled us to investigate the generalizability aspect of the models
developed with a typical MMLA pipeline. In other words, these two
evaluation strategies assess generalizability within (at the instance
level) and across contexts (at the context level), respectively (as per
[5]). We report the model’s performance using accuracy and kappa
metrics.

4We mapped scores below or equal to zero as ’Low’ otherwise ’High’.
5Here, we consider a learning context different if there are changes in any of the
following: teacher, students, subject, education level, learning activity, and type of
activity.
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Figure 2: Exploration of pipelines with different configurations

3.3.2 Exploringmodeling pipeline with different configurations (RQ2).
Figure 2 shows our exploration6 of various pipelines having dif-
ferent configurations for the following steps: data scaling, outlier
handling, hyperparameter optimization, and classification thresh-
old selection. In MMLA, it is common for the extracted features to
have a different range, which could affect the process of building the
model. For this reason, we included data scaling in our exploration.
This data scaling step is likely to be influenced by the existence of
outliers (anomaly values). Therefore, we additionally included the
outlier handling step. The hyperparameter tuning step was also
explored as it is often a part of the model development involving
machine learning techniques that require manual configuration of
parameters (refer to [6] for further details). For example, in our case
of a random forest, the number of trees had to be decided before
training. Finally, we decided to explore the classification threshold
selection step, which is often used in machine learning and found
to be effective in handling class imbalance problems [7].

For data scaling, we used the widely adopted Standard scaling
which transforms data distribution with a mean zero and stan-
dard deviation of one. Additionally, we also employed the MaxAbs
scaling technique which instead of shifting the mean of data like
Standard scaling, scales the data while preserving its sparsity. The
use of the data scaling step, however, also depends on the used
machine learning algorithms. For example, in our case using data
scaling was irrelevant due to the use of a tree-based algorithm (i.e.,
random forest). Despite we kept the step in the methodology so
that it could be useful with other types of machine learning algo-
rithms, in particular distance-based algorithms (e.g., support vector
classifier).

For outlier handling, we decided to employ the clipping method
to handle outliers instead of removing them due to the size of the
dataset. The clipping method replaces the outlier values with the

6Source code: https://github.com/pankajchejara23/collaboration-quality-classification-
modeling-using-MMLA

Table 3: Details of contextual features

Feature Description
activity_type Type of collaborative learning activity, e.g., col-

laborative writing, problem-based.
time_of_day When the activity took place, e.g., in the morn-

ing or in the evening.
students Number of total students present in the class-

room during the activity.
teacher_id Teacher present in the activity.
classroom_id Classroom identifier.
language Language used for instruction and communica-

tion, e.g., English, Estonian.

border value of the clipping interval (e.g., interval .05 - .95 replacing
the large value with 95%tile value). For hyperparameter tuning, we
used GridSearch CV from python’s SciLearn library [18]. For the
classification threshold, we chose a criterion that maximizes the
kappa based on past research [7].

With all these steps except data scaling, we generated modelling
pipelines either including the step or skipping it. For example, for
the classification threshold, there were two different versions of
pipelines generated, one with it and another one without it. For
data scaling, we used Standard scaling in one group and MaxAbs
in the second group.

All these configurations generated 16 pipelines in total. These
pipelines were then used with two groups of features. The first
group only contained the extracted multimodal features (Table 2).
The second group contained multimodal features with contextual
features (Table 3). This step resulted in a total of 32 pipelines. These
pipelines were used to develop estimation models. For evaluation,
we followed the same strategy as above.

https://github.com/pankajchejara23/collaboration-quality-classification-modeling-using-MMLA
https://github.com/pankajchejara23/collaboration-quality-classification-modeling-using-MMLA
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Table 4: Random forest classification performance using base MMLA pipeline

Target Class balance
Instance generalizability Context generalizability

(10-fold cv) (leave-one-context-out)
Accuracy Kappa Accuracy Kappa

Collaboration quality 68% 72% (3) .23 (.06) 69% (16) .15 (.11)
Argumentation 53% 63% (4) .25 (.07) 57% (11) .17 (.11)
Sustaining mutual understanding 67% 72% (3) .23 (.05) 70% (14) .16 (.10)
Collaboration flow 71% 74% (2) .22 (.04) 71% (15) .14 (.11)
Knowledge exchange 71% 75% (3) .26 (.05) 74% (11) .18 (.11)
Cooperative orientation 70% 73% (2) .22 (.04) 70% (16) .14 (.10)
Individual task orientation 65% 69% (2) .17 (.09) 64% (14) .10 (.10)
Structuring problem solving 69% 72% (3) .15 (.07) 65% (24) .07 (.09)

3.3.3 Statistical analysis on the impact of contextual features and
modelling steps on the generalizability of the model (RQ3). To study
the impact of a particular modelling step as well as the contextual
features on the generalizability of the model, we divided the total
number of pipelines into two sets. One with all the pipelines using
that step (or the contextual feature, or MaxAbs scaling) and the
other with the same but without that step (or no use of the contex-
tual feature or use of Standard scaling). These two sets of pipelines
were then employed to develop models for collaboration quality
and its dimension, resulting in two sets of performance measures.
The performance measures were not following a normal distribu-
tion. Therefore, we used a non-parametric Wilcoxon signed-rank
test [34] to assess the statistical significance of differences in the
model’s generalizability as a result of adding a modeling step.

4 RESULTS
We present the results from our systematic evaluation of developed
classification models using a typical modelling pipeline (RQ1), the
exploration of 32 different pipelines with different configurations
(RQ2), and the statistical analysis of its performance to study the
impact on the models’ generalizability across contexts (RQ3).

4.1 Performance of classification models
developed using typical MMLA pipeline
(RQ1)

Table 4 presents the classification models’ performance in terms of
kappa and accuracy using a widely used modeling pipeline (multi-
modal data collection → feature extraction → model development
→ model evaluation). Models in general achieved better perfor-
mance than the baseline of chance performance (Kappa = 0). As
expected, the performance of models degraded across different con-
texts in terms of kappa. However, when we look at the accuracy
metric of performance, models seem to perform stably with a slight
decrease in performance. For example, the collaboration quality
model achieved 72% accuracy at 10-fold CV and 69% accuracy across
contexts evaluation. This, however, may only indicate the model’s
performance in terms of classifying the positive class correctly
(e.g., High collaboration quality) given class imbalance issue. In
terms of classifying both, positive and negative classes, the models’

predicted labels were in fair7 agreement with ground truth (.20 <
Kappa < .40) for instance generalizability except for individual task
orientation and structuring problem-solving8 dimensions. For these
two dimensions, the Kappa was < .20, indicating poor agreement.
On across contexts evaluation, all models’ kappa exhibited poor
agreement with ground truth ( < .20).

4.2 Exploring pipelines to develop more
generalizable models (RQ2)

We present the results of modeling pipelines that enabled the im-
provement over the base pipeline in terms of the generalizability
of developed models (Table 5). The reported pipelines improved
model’s performance at both levels of generalizability, instance
and context. At instance level (with 10-fold CV), these pipelines
improved Kappa from fair (with base pipeline) to moderate (.40 <
Kappa < .60) for all target labels (as per [10]). However, we only
report the performance across contexts in table 5 to offer a com-
parison in terms of generalizability across contexts. We can notice
that the new pipelines improved the performance for each target
label in terms of kappa, bringing it from poor (Kappa < .20) to fair
(.20 < Kappa < .40).

For individual task orientation and structuring problem solv-
ing the performance enhanced the most with the improvement of
+.20 and +.30 in kappa, respectively. It can be seen that the most
stable (standard deviation = .09) model for performing across con-
texts is the collaboration quality classification model developed
with the pipeline (CON→MAX→HP→TH). In terms of accuracy,
there was not much improvement, indicating models making an
approximately equal number of correct classifications. However,
the improvement in kappa suggests that the new models improved
on classifying not just the positive class but also the negative class.

We also provide the performance measure for the base and
new pipelines in terms of how much gap they were able to fill
from chance to human performance (Figure 3). The new model-
ing pipelines enabled the models to fill more than 25% gap from
chance to human performance for collaboration quality and most
of its dimensions. All the best-performing pipelines have utilized
contextual data features, suggesting a positive impact of contextual

7Kappa interpretation as per [10] guidelines
8Referring to structuring problem solving and time management.
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Table 5: Random forest classification performance across contexts with best performing MMLA pipeline

Target Base pipeline
More generalizable model building pipeline

Pipeline Performance
Accuracy Kappa

Collaboration quality .15 (.11) CON-Max-HP-TH 71% (14) .27 (.09)
Argumentation .17 (.11) CON-Max-HP-TH 63% (18) .26(.19)
Sustaining mutual understanding .16 (.10) CON-OH-Sta-HP-TH 70% (13) .28 (.17)
Collaboration flow .14 (.11) CON-OH-Sta 73% (14) .25 (.18)
Knowledge exchange .18 (.11) CON-OH-Sta 75% (11) .29 (.12)
Cooperative orientation .14 (.10) CON-OH-Max-HP-TH 68% (18) .28 (.19)
Individual task orientation .10 (.10) CON-Max-TH 71% (13) .30 (.18)
Structuring problem solving .07 (.09) CON-Sta 75% (21) .37 (.26)

Figure 3: Improvement in model’s generalizabilty across
contexts (Kappa normalized with respect to human-
performance); CQ: Collaboration quality, ARG: Argumenta-
tion, SMU: Sustaining mutual understanding, CF: Collabo-
ration flow, KE: Knowledge exchange, ITO: Individual task
orientation, STR: Structuring problem solving

features. Moreover, pipelines involving the use of Standard scaling
had outlier handling in 3 out of 4 cases.

4.3 Statistical analysis of impact of contextual
features and different modeling steps on
model’s generalizability (RQ3)

Table 6 reports the results of the Wilcoxon signed-rank test on
the impact of contextual features and used modeling steps on the
generalizability of developed models.

Table 6: Results of Wilcoxon signed-rank test

Pipeline step Mean_diff_kappa Z-statistic P-value

Outlier .002 2.24 .02 *

Scaling .002 1.5 .13
Tuning -0.04 -6.43 .000 *

Thresholding .03 5.81 .000 *

Context .05 9.48 .000 *

*:p-value < .05

All the investigated modeling steps (and use of contextual fea-
tures) except data scaling were found to have a statistically signif-
icant (p-value < 0.05) impact on the model’s generalizability (or
performance across contexts). The use of contextual features, out-
lier handling, and threshold selection showed a positive impact,
while hyper-parameter tuning was found to have a negative impact
on the model’s generalizability. We also tested these effects for
their statistical significance using one-tailed test. Our results from
one-tailed (diff > 0) had a p-value < .05, supporting our inference
over the positive impact of data scaling, threshold selection, and
use of contextual features on the model’s generalizability. In the
one-tailed (diff < 0), only the hyper-parameter step was found to
have a statistically significant impact, supporting the claim over its
negative impact on the model’s generalizability.

5 DISCUSSION
This section discusses the results for each research question and
also outlines the limitations of the study.

5.1 RQ1:How do collaboration estimation
models which are developed using a
standard MMLA pipeline perform across
different contexts?

The base MMLA modelling pipeline produced models that per-
formed better in terms of accuracy achieved for instance gener-
alizability with respect to a baseline of chance performance. The
accuracy of classification models (for collaboration quality and
its dimensions) was in the range of 63%-83%. The kappa measure,
however, was in the range of .15-.25, mostly having a fair level
(.20 < Kappa, according to [10]) of agreement between the ground
truth and predicted labels. The models were able to retain their
performance across contexts in terms of accuracy metric with a
slight decline of 1%-6% in the performance. However, the overall
performance in classifying positive and negative classes degraded
badly (Kappa < .20, slight agreement).

The difference between the accuracy and the kappa measures
of model performance can be explained by the uneven distribution
of classes in our dataset. For collaboration quality and its dimen-
sions, the distribution was approximately 70% to 30% on positive
v/s negative class. If we then take a base model which always pre-
dicts the majority class, we will end up achieving 70% accuracy.
That is what the models developed with the MMLA base pipeline
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achieved, which suggests that the developed models did not do
much better than the base model. These differences, however, be-
come more visible with kappa. Thus, our results highlight why the
use of accuracy is inadequate in MMLA where class labels are not
necessarily evenly distributed.

One possible explanation for the model’s poor performance in
terms of kappa < .20 at the context level could be due to the datasets
from contexts varying in multiple aspects (e.g., classroom level,
teacher, subject, etc.). This makes the classification task difficult,
even for human experts as shown in our inter-rater agreement
scores for all the dimensions of collaboration quality (.60 < kappa <
.80).

5.2 RQ2:Which pipeline offers further
improvement in the model’s performance
across contexts, in other words, its
generalizability?

Our exploration of different modelling pipelines enabled us to iden-
tify high-performing modelling pipelines which improved the gen-
eralizability of the models. Major improvements were seen for indi-
vidual task orientation and structuring problem solving models. For
individual task orientation, performance across contexts improved
from kappa of .10 to .30 using a pipeline with the following steps:
use of contextual data → MaxAbs scaling → hyper-parameter tun-
ing → threshold selection. For structuring problem solving the use
of contextual data with standard scaling resulted in an improvement
of kappa from .07 to .37. The variation in the performance (across
contexts) of structuring problem-solving model was the highest
with .26. Simultaneously, the collaboration quality model was the
most stable in terms of generalizing across contexts (.09).

The structuring problem solving dimension is comparably dif-
ficult to learn as also shown in our inter-rater agreement scores,
achieving the lowest (kappa = .65) for the same dimension. More-
over, given the use of simple features, the model learned from
contextual features which were observed in the feature importance
exploration (e.g., there were 4 contextual features among the top
10 important features). This might have caused instability in the
generalizability of the model. Notwithstanding, for collaboration
quality and individual task orientation models, there were respec-
tively zero and only one contextual feature in the top 10 important
features. It might suggest that the use of contextual features in a
complementary way with multimodal features can lead to a stable
generalizable model. For example, the collaboration quality model
was mainly harnessing multimodal data features (10 most impor-
tant features were multimodal features) and additionally leveraging
contextual features with relatively less importance in prediction.

We would like to point out that the models themselves are more
of an illustration than a contribution. The features used in the paper
were selected based on prior research and also because of their
simplicity. This can make the developed models easily interpretable
which is of significant importance in educational settings. We deem
amore important contribution of our presentedmethodologywhich
despite using simple features led to significant model performance
improvement when evaluated across contexts.

5.3 RQ3:What is the impact of adding/removing
a modelling step and contextual features on
the model’s performance across contexts?

Our results showed that outlier handling, use of contextual features,
and threshold selection steps positively impact a model’s general-
izability. One of the possible explanations for improvement in the
model’s performance across contexts because of outlier handling is
that our features (e.g., number of characters added or deleted) had
some extreme values. For example, when the student did a copy-
paste operation, it resulted in tracking a high number of characters
added in a very short time. Having those extreme values in the
datasets and not handling them before performing scaling is most
likely to affect the data. Therefore, having an outlier handling step
might avoid this issue.

The use of context data positively impacts the generalizability of
the model. The potential of contextual information has already been
advocated in the field of Learning Analytics (LA) [24] and MMLA
[27] for understanding learning behavior (e.g., performance). With
our results, we further provide evidence on the positive impact of
using contextual information in model building and its benefit in
improving the generalizability of the model across contexts.

For threshold selection, we were anticipating an improvement
because the class distribution in our datasets was uneven. Thus,
the use of 0.5 for decision-making was not necessarily an adequate
option. The threshold selection step tries to mitigate the issue of
uneven class distribution by learning the threshold from training
data.

There was no statistically significant difference found in the
model’s performance across contexts as a result of adding MaxAbs
scaling. This is because of the insensitivity of tree-based machine
learning algorithms, random forest in our case, towards data scaling.

The results for hyperparameter tuning were surprising. We were
expecting it to improve the model’s performance. However, this
step had a negative impact on the model’s generalizability. This
could be due to the introduction of an overfitting effect when the
hyperparameter tuning step selected a model only performing well
for a particular set of datasets. Moreover, the small size of the
datasets may have increased the likelihood of overfitting the model
in the training phase.

5.4 Limitations
Our work has six main limitations. The first limitation is our selec-
tion of contextual aspects to determine the difference in contexts.
This selection, along with our definition of context, is debatable.
The second limitation is that most of the datasets we collected were
from English language classrooms restricting the variability of con-
texts. Other contextual aspects could be regarded for differentiation
of contexts. Thus, a more systematic evaluation is needed in a wider
range of contexts to address these two limitations. The third limita-
tion is that the reported results should be interpreted in the context
of a specific type of collaborative learning activity with a specific
tool. This does not allow our findings (or our resulting models) to
be necessarily applicable to other types of collaborative learning
activities. To validate our findings, we will include other types of
group activities in our future studies. The fourth limitation is with
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our use of simple features for modeling collaboration. We acknowl-
edge that the used features are unlikely to generalize to contexts
different on a higher level (e.g., different schools) and would require
the use of additional features (e.g., language features). Furthermore,
our use of the contextual features, in particular teacher_id and
classroom_id, limits the applicability scope of developed models
to contexts having the same set of teachers and classrooms. The
fifth limitation is the use of a specific machine learning algorithm
(random forest). There is a possibility that with the use of a different
machine learning algorithm, a different modelling pipeline could
work better in developing generalizable models in other particular
contexts. Hence, the exploration of used pipelines with a different
set of machine learning algorithms would be required. Addition-
ally, we did not explore other pipeline steps (e.g., feature merging
techniques, different window-size merging, etc.) in our current
investigation of pipelines to keep the focus on the investigated
modelling steps. We plan to include those steps in our pipeline
exploration toward collaboration quality modelling in our future
studies. Our longer-term goal is to add more generalizable guiding
functionalities to CoTrack with the purpose of supporting teachers
in the classroom during collaborative learning activities.

6 CONCLUSION
This paper addressed the gap on the lack of MMLA research in
building generalizable models for classifying collaboration quality
and its dimensions. Our findings offer insights into where the cur-
rent model development pipeline in MMLA falls short in building a
generalizable model. We also shed light on how it can be addressed
with the inclusion of contextual features along with additional
steps in the modelling pipeline. The findings presented in this pa-
per along with the used methodology take a step towards building
generalizable collaboration quality models and understanding the
generalizability of current (state-of-the-art) models, which is criti-
cal for real-world implementation of MMLA. The development of
such models could further help the community to achieve the goal
of building automated guiding tools to help teachers better under-
stand and guide students during collaborative learning activities.
We hope that other MMLA researchers will take up the exhaustive
exploration of pipelines and results presented in this paper so that
we can better understand how far we are from human performance.
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